SIG2 – Subcommittee on Mission Diversity

David R. Ardila

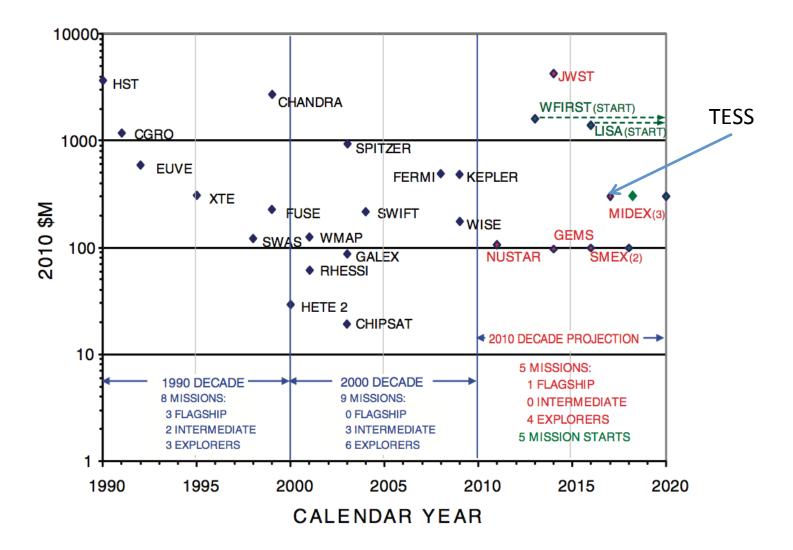
The Aerospace Corporation

The Non-Flagships

- Suborbitals: Rockets, Balloons, Cubesats
- Missions of Opportunity
- Explorers:
 - Small
 - Medium
- "Probes"

Goals

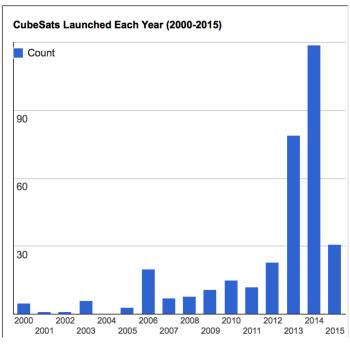
- To understand the current institutional landscape
- To understand the role and goals of nonflagships in the context of flagship plans
 - Unique science
 - Unique technology development


What Astro2010 said

- "Maintaining a balanced program is an overriding priority for attaining the overall science objectives"
- Second recommendation after WFIRST:
 Augment the Explorer program (2012-2021).
 \$100M/year by 2015.
 - 2 new MidEx (\$300M each)
 - 2 new SMEX (\$160M each)
 - 4 MoO (\$30M to \$70 M each)
- Unranked: 15M/year additional funding for suborbitals

Astrophysics & Heliophysics Explorers Missions

http://explorers.gsfc.nasa.gov/missions.html



Astro2010, pg. 168

Cubesats

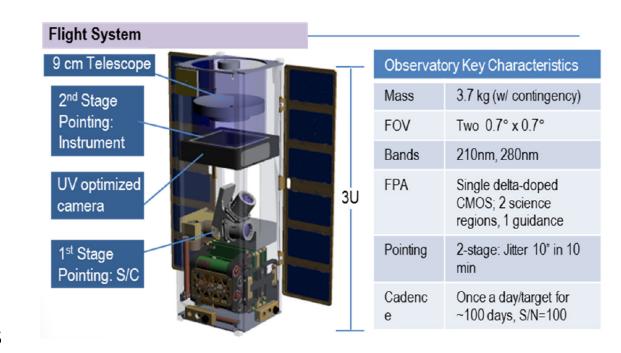
Cubesats

- Small, standard-size satellites:
 1U = 10 cm x 10 cm x 10 cm
- They can be 1U, 3U, or 6U
- 341 launched so-far: Tech demos, university experiments, earth observation.
- Future launches for planetary exploration
- Maybe ≈6 have an astrophysics mission

https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database#database

BRITE

What to do with a cubesat?


- Aperture-challenged: Max aperture is 10 20 cm for monoliths
- Pointed (no survey) observations: Best pointing so far is ≈10"
- Time-domain: Difficult to do with other facilities
- Ultraviolet: Of course!

How much does it cost?

- Hard to tell: In general, universities do not use cubesat projects to pay salaries. A 1U cubesat may cost as low as ≈\$100K
- 3U "Astrophysics grade" bus is ≈ \$2M
- With payload and operations: \$5M to \$10 M
- Funding sources:
 - Plenty for tech development.
 - Science:
 - ROSES suborbital APRA (\$6M/year for 15 investigations)
 - MO: \$35 M.

An example: Space Explorer for Accretion and Reverberation - SpEAR

- Collaboration JPL Aerospace
- PI: Varoujan Gorjian (JPL)
- Aerospace PI: David Ardila
- ROSES APRA suborbital call
- Measure BH masses:
 Observe Seyfert-1
 galaxies for 100 days
 in two UV bands

Science Discussion

Open Discussion

- The realm of the non-flagships
- Large Explorer, Probes?

Non-Flagships Advantages

- Everything that a general purpose observatory cannot do:
 - Time-domain
 - Missing wavelengths: <1150 A
 - All-Sky surveys: UV only, has to be better than GALEX
 - Specific set of targets: e.g. All transiting planets around Mdwarfs
 - Specific Capabilities
 - High precision photometry: 10 ppm, for example
 - High contrast imaging
 - Deep wide-field imaging
 - Better than current PSF (GALEX: 5", HST: 0.05")
- Other?

The 2012 NASA RFI

- 2012 May 25: Soliciting community input for compelling science drivers that could be accomplished by observations with an ultraviolet/visible space telescope.
- 34 responses
- Analysis published in

"Scientific objectives for UV/visible astrophysics investigations: a summary of responses by the community (2012)" Paul Scowen, Mario Perez, Susan Neff, & Dominic Benford, Exp. Astronomy 2013.

Table 1 Summary of RFI responses and capability requirements provided

PI	Investigation Title	Angular Resolution	Telescope Diameter	λ (short)	λ (long)	Field of View	Spectral Resolution	Sensitivity	Photo- metry?	Spectro- scopy?	Spectral multiplexing?	Time domain?	Science Category
Gull	How do molecules and dust form in massive interacting winds?	<0.010"		3000 Å	7000 Å	2"	10,000	< <hst< td=""><td></td><td>Y</td><td>MOS</td><td></td><td>Stars</td></hst<>		Y	MOS		Stars
Provencal	The Importance at White Dwarf Stars as Tests of Stellar Physics and Galactic Evolution		2 m+	912 Å	3000 Å	10' × 10"	50,000	V~35	Y	Y	IFU		Stars
Lawler	The Origin of the Elements Heavier than Iron	~0.1		1900 Å	3050 Å	10' × 10'	60,000			Y	MOS?		Stars
Neiner	UVMag: Stellar physics with UV and visible spectropolarimetry	?		1170 Å	$0.87~\mu\mathrm{m}$		25,000	V~10	Y; pol			Y	Stars
Ignace	Importance of time series and polarimetry								Y; pol			Y	Stars
Carpenter	Mass Transport Processes and their Roles in the Formation, Structure, and Evolution of Stars and Stellar Systems	<100 μ"	1 m × N	1200 Å	1600 Å	4 mas	10 Å		Y	Y	spectral imaging	Y	Stars
Scowen	Understanding Global Galactic Star Formation	0.020"	1.5 m-4 m	2500 Å	$0.95~\mu\mathrm{m}$	>15' × 15'			Y				Star Forma- tion
Scowen	The Magellanic Clouds Survey—a Bridge to Nearby Galaxies	<0.1"	2 m–4 m	2000 Å	\sim 1 μ m	10' × 10'	30,000	10 ⁻¹⁶ erg/s/ cm ² /arcsec ²	Y	Y			Star Forma- tion; Stars
Wofford	Massive Stars: Key to Solving the Cosmic Puzzle	<0.1"	$\geq 10 \text{ m}$	912 Å	$0.9~\mu\mathrm{m}$	25"× 25"	6,000			Y			Nearby Gala- xies; Stars
Barstow	Conditions for Life in the Local Universe	<0.1"		1000 Å	3000 Å		100,000		Y	Y	prob N		Nearby Galax- ies; Stars

Imaging

Parameter	Enabled	Not Enabled		
Waveband:				
≥92 nm	18	0		
≥115 nm	11	5		
≥250 nm	4	13		
Resolution:				
≥1 mas	13	3		
≥10 mas	12	4		
≥50 mas	8	8		
Aperture:				
1–2 m	7	10		
2.4 m	11	6		
4 m	12	5		
8 m+	16	1		
FoV:				
1 arcmin	5	12		
10 arcmin	11	6		
30 arcmin	15	2		

[&]quot;...an imaging mission that uses a 2.4 m aperture size, has mirrors coated with MgF2 over aluminum, that provides imaging sampling at 10 mas, and a combined field of view measured around 10–20' would enable better than 60 % of the proposed science submitted to this opportunity."

Spectroscopy

Parameter	Enabled	Not Enabled		
Waveband:				
≥92 nm	22	2		
≥115 nm	13	11		
≥250 nm	2	22		
Spectral Resolution:				
R = 1000	9	15		
R = 10,000	16	8		
R = 40,000	18	6		
Aperture:				
1–2 m	6	18		
2.4 m	12	12		
4 m	16	8		
8 m+	20	4		
MOS:	8	N/A		

[&]quot;a spectroscopic mission that is between 2.4 m and 4 m in aperture size, is coated with materials that provide access shortward of 115 nm or with few enough reflections to minimize losses, that provides spectral resolution of at least R = 10,000 would enable better than 50 % of the proposed science"

Submitted WP

Name	Author	Science	Class	Aperture	Observables	Why unique?
Exoplanet Environment Monitor	Linsky/ France	Exoplanet monitoring	MidEX?	1m	UV Spec – X ray flux	Time-domain observations of a particular set of targets
CASTOR	Cote/ Hutchings	Complement Euclid and WFIRST - GO + surveys	LEX?	1m	0.7 sq-deg FOV, 0.15-0.55 mic	Wide FOV
Life-Finder	Неар	Find life	MidEX?	4 m	Near UV	Coronography
GESS	Неар	Galaxy evolution	SMEX?	1.5 m	0.2-0.4 mic (spec) 0.4-0.8 mic (img)	MOS